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In this paper, the first investigation on free vibration analysis of three-layered nanobeams
with the shear effect incorporated in the mid-layer based on the nonlocal theory and both Eu-
ler Bernoulli and Timoshenko beams theories is presented. Hamilton’s formulation is applied
to derive governing equations and edge conditions. In order to solve differential equations of
motions and to determine natural frequencies of the proposed three-layered nanobeams with
different boundary conditions, the generalized differential quadrature (GDQM) is used. The
effect of the nanoscale parameter on the natural frequencies and deflection modes shapes of
the three layered-nanobeams is discussed. It appears that the nonlocal effect is important
for the natural frequencies of the nanobeams. The results can be pertinent to the design and
application of MEMS and NEMS.
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1. Introduction

In the last few years, scientific researchers have been focusing on nanotechnology and the re-
sulting nano-materials which play key roles in many engineering devices at the nano-scale used
in several applications including microactuators, microswtiches, biosensors, nanowires, nanopro-
bes, ultra-thin films and micro-and nano-electromechanical systems (MEMS and NEMS) studied
in works of (Hung and Senturia, 1999; Li et al., 2003; Moser and Gijs, 2007; Pei et al., 2004;
Najar et al., 2010). In fact, nano-materials have special mechanical, chemical, electrical, optical
and electronic properties. Modeling and analysis of nanostructures including nanobeams, nano-
fils, carbon and boron-nirtide nanotubes, nanoribbons and nanoplates which are mostly applied
MEMS and NEMS, and tracking their mechanical behavior can give truthful and promising
results for designing such devices.

Although classical theories of linear and nonlinear vibration of strings and beams at ma-
croscales are well established, the vibration behavior of structures at the nanoscale, which is
significantly size dependent, is far from being well understood. In fact, experimental and mole-
cular dynamics simulation results (Bauer et al., 2011) have shown that the small-scale effects in
the analysis of mechanical properties of nano- and micro-structures cannot be neglected. Due
to being scale-free, the classical continuum theory is unable to accurately detect the static and
dynamic mechanical behavior of nano- and micro-structures.
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Nonlocal continuum theories of elasticity has found successful applications in nanomecha-
nics including lattice dispersion of elastic waves, wave propagation in composites, dislocation
mechanics, fracture mechanics (Peddieson et al., 2003). Nonlocal theories that have been studied
in the literature include Eringen’s nonlocal elasticity theory (Eringen, 1972), modified couple
stress theory of Mindlin (1963), Koiter (1964), and Toupin (1964), and the strain gradient theory
(Mindlin, 1965; Lam et al., 2003). Eringen’s nonlocal elasticity can be classified into a differential
nonlocal form or an integral nonlocal form. Detailed review of both forms is discussed by Lim
(2010).

Numerous researchers have studied the mechanical behavior of nano-sized structures based
on Eringen’s nonlocal elastic theory. Analytical solutions for bending, buckling and vibration of
beams using the Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam theories have been
developed by Reddy (2007). Analytical study of bending, buckling and vibration response of a
Euler-Bernoulli nanobeam was proposed in the work of Thai (2012). Using a meshless method
based on collocation with a radial basis, Roque et al. (2011) studied static bending, buckling
and free vibration behavior of a Timoshenko nanobeam. Considering the perturbation method,
free vibration, steady-state resonance and stability of a vibrating nanobeam subjected to a va-
riable axial load was studied by Li et al. (2011). Moreover, the finite element method was used
by Eltaher (2013) to solve the vibration problem of a Euler-Bernoulli nanobeam. Nonlinear vi-
bration of nanobeams is reported in several works. Reddy (2010) reformulated classical shear
deformation beam and plate theories taking into account the von Karman nonlinear strains.
The nonlinear pull-in instability of a nanoswitch modeled as an Euler-Bernoulli nanobeam sub-
jected to electrostatic and intermolecular forces and having different boundary conditions was
investigated by Mousavi et al. (2013) using the differential quadrature method. Later, nonlinear
finite element analysis of the Euler-Bernoulli and Timoshenko beam theories with the von Kar-
man nonlinear strains and Eringen’s nonlocal model was developed by Reddy and El-Borgi
(2014).

The choice of a discretization process is indispensable for obtaining the number of resul-
ting ordinary differential equations. Discretized models are time efficient and can be stron-
gly employed to determine dynamics of systems subject to simple excitations with very
small displacements about a given equilibrium point (Shkel, 2006). Finite element lumping
of MEMS and NEMS, including complex geometry and using commercial softwares would
provide more rigorous results. However, this discretization remains a heavy step in the de-
sign procedure, even when using automated size-reduction routines. Furthermore, the dy-
namic behavior cannot be totally inspected using these models. However, there are other
discretization methods, such as the generalized differential quadrature method (GDQM),
which approximate the original mechanism by a small number of ordinary differential equ-
ations. These techniques preserve the complexity of the system response, due to nonli-
nearities, in a parameterized model that is well suited for relatively complex geometries.
Using this approach, the system dynamics can be precisely modeled using fewer degrees of
freedom.

This paper makes the first attempt to investigate vibration of three-layered nanobeams incor-
porating the mid-layer shear effect based on Eringen’s nonlocal theory as well as Euler Bernoulli
and Timoshenko beam theories. The nonlocal nanobeam model is developed to capture the size
effect in three-layered nanostructures. The governing equations and boundary conditions are de-
rived by using Hamilton’s principle. The generalized differential quadrature method (GDQM) is
employed to discretize the governing equations which are then solved to obtain natural frequen-
cies and mode shapes of three-layered nanobeams with different edge conditions. The influence
of the nonlocal parameter on the vibration of the three-layered nanobeams incorporating the
mid-layer shear effect are discussed.
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2. Equations of motion and boundary conditions of the nonlocal three-layred

nanobeam model

The majority of existing works on nonlocal elasticity are pertaining to the analysis of single
nanobeams: nanotubes (Wang et al., 2007; Reddy, 2007; Behera et al., 2014) and nanoribbons
(Nazemnezhad et al., 2015). Though mechanical studies of nanobeams may include buckling
and vibration of multiple-walled nanotubes and multilayer nanoribbons, the study of discrete
multi-layered nanobeams has not been reported in literature.

Recently, Nazemnezhad et al. (2016) discussed nonlocal vibration of multi-layer graphene
nanoribbons (MLGNRs) incorporating the interlayer shear effect. In fact, multilayer graphene
nanoribbons (MLGNRs) are single layers of nanoribbons held together by weak van der Waals
(vdWs) forces. According to Nilsson et al. (2008) and Hosseini Kordkheili et al. (2013), these
weak interlayer vdWs bindings induce considerable changes in electrical and mechanical proper-
ties of MLGNRs (Nilsson et al., 2008) and (Hosseini Kordkheili et al., 2013) and, consequently,
static and dynamic behavior of MLGNRs will change.

Based on the above discussion, in this paper an investigation is carried out to illustrate
the small-scale effects in the behavior of a three-layered nanobeam incorporating the interlayer
shear effect. The studied nanobeam is constructed of a thin elastic layer sandwiched between two
identical elastic layers. The following general assumptions are made when developing governing
differential equations of motion in free vibration of a three-layered nanobeam and associated
boundary conditions:

• The theory of linear elasticity is applied to all displacements and strains.

• Transverse normal strains in the three layers are negligible.

• There is continuity of displacement at the interfaces between the layers.

Considering Cartesian coordinate system, Fig. 1 shows a three-layered nanobeam of length L.
Each layer has its own geometric properties with a subscript i denoting the layer number (i = 1
for the top layer). Thus each layer has thickness hi, width bi (so that area Ai = hibi).

Fig. 1. Schematic configuration for a three-layered nanobeam incorporating the mid-layer shear effect

The system of displacements used is as follows. All three layers have common flexure in the
y-direction with the flexural displacement denoted by w. The axial displacement (i.e. displace-
ment in the x-direction) of the mid-plane of each layer is ui (i = 1, 2, 3) which varies linearly
through thickness, as shown in Fig. 1.

Assuming that the cross-section of each layer does not rotate so as to be normal to the
common flexure, but it necessarily shears at the central layer, we propose to model the upper
and lower layers by considering the Euler-Bernoulli beam formulation, and the central layer
behavior is captured using the Timoshenko beam formulation taking into account small-scale
effects.
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According to the Euler-Bernoulli beam theory, the displacement of an arbitrary point of lay-
er (1) and layer (3) of the three-layered nanobeam along the x and z axes denoted by uxi(x, z, t)
and uzi(x, z, t), respectively, are:

— for h22 ¬ z ¬
h2
2 + h1

uz1(x, z, t) = w1(x, t) ux1(x, z, t) = u1(x, t)−
(

z −
h1 + h2
2

)

w,x(x, t) (2.1)

— for −h3 −
h2
2 ¬ z ¬ −

h2
2

uz3(x, z, t) = w3(x, t) ux3(x, z, t) = u3(x, t)−
(

z +
h3 + h2
2

)

w,x(x, t) (2.2)

where ‘,’ symbolizes differentiation with respect to coordinates and u1, w1, and u3, w3 are the
axial and transverse displacements of an arbitrary point located on the mid-axis of layer (1) and
layer (3), respectively, and t is time. It is further assumed for the transverse displacement that
uz1 = uz2 = uz3 = w(x, t). For layer (2), the displacement is expressed using the Timoshenko
beam theory for the shear effect taken into account

uz2(x, z, t) = w(x, t) uc(x, z, t) = u2(x, t) + zφ(x, t) −
h2
2
¬ z ¬

h2
2

(2.3)

where φ is rotation of the beam cross-section.
The strain-displacement equations of the three-layered nanobeam are given as follows

ε
(1)
xx = u1,x −

(

z −
h1 + h2
2

)

w,xx ε
(2)
xx = u2,x + zφ,x

γ
(2)
xz = w,x + φ ε

(3)
xx = u3,x −

(

z +
h3 + h2
2

)

w,xx

(2.4)

The strain energy U of the three-layered nanobeam resulting from the advent of variation in
the stresses with respect to the initial configuration is given by

U =
1

2

L
∫

0

∫

A

(

σ(1)xx ε
(1)
xx + σ

(2)
xx ε
(2)
xx + σ

(2)
xz γ
(2)
xz + σ

(3)
xx ε
(3)
xx

)

dAdx

=
1

2

L
∫

0

[

N (1)x u1,x +N
(2)
x u2,x +N

(3)
x u3,x −

(

M (1)x +M
(3)
x

)

w,xx

+M (2)x φ,x +Q(w,x + φ)
]

dx

(2.5)

where N
(i)
x , M

(i)
x and Q are the normal resultant force, the bending moment and the transverse

shear force for layer (i), respectively. They are obtained from

N (1)x =

∫

A

σ(1)xx dA = EA1u1,x = A11u1,x N (2)x =

∫

A

σ(2)xx dA = EA2u2,x = A12u2,x

N (3)x =

∫

A

σ(3)xx dA = EA3u3,x = A13u3,x M (1)x =

∫

A

σ(1)xx z
(1) dA = b1Dw,xx = B11w,xx

M (3)x =

∫

A

σ(3)xx z
(3) dA = b3Dw,xx = B13w,xx M (2)x =

∫

A

σ(2)xx z dA = b2Dφ,x = B12φ,x

Qx = ks

∫

A

σ(2)xz dA = ksGA(φ + w,x) = ksC12(φ+ w,x)

(2.6)
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in which A1, A2 and A3 are the cross section areas of layer (1), layer (2) and layer (3), respecti-
vely. D is the bending rigidity of the three-layered nanobeam. ks is the shear correction factor
depending on the shape of the cross section of the beam.
The kinetic energy T can be expressed as

T =
1

2

L
∫

0

∫

A

ρ(u̇2xi+ u̇
2
zi) dAdx =

1

2

L
∫

0

[I1(u̇
2
1+ ẇ

2)+ I2(u̇
2
2+ ẇ

2)+ I3φ̇
2+ I4(u̇

2
3+ ẇ

2)] dx (2.7)

where ‘.’ signifies differentiation with respect to time, {I1, I2, I3, I4} = ρ{A1, A2, I, A3} and
Ai = bihi, I = b2h

3
2/12.

Using Hamilton’s principle (
∫ t
0(δT − δU) dt = 0), the classical governing equations of the

three-layered nanobeam are obtained as follows

N (1)x,x = I1ü
2
1 N (2)x,x = I2ü

2
2 N (3)x,x = I4ü

2
3 M (1)x,xx = I1ẅ

2

M (2)x,x −Qx = I3φ̈
2 Qx,x = I2ẅ

2 M (3)x,xx = I4ẅ
2

(2.8)

Considering a beam-type structure, thicknesses and widths are much smaller than its length.
So that, for a beam with transverse motion in the xz-plane, we can assume that the nonlocal be-
havior is negligible in the thickness direction (Reddy, 2007). Then, nonlocal constitutive relation
(2.3) can be approximated to a one-dimensional form expressed as in the following

σxx − (e0a)
2 ∂
2σxx
∂x2

= Eεxx σxz − (e0a)
2∂
2σxz
∂x2

= Gγxz (2.9)

where E and G are respectively the elastic modulus and shear modulus of the beam. e0a is
the scale coefficient revealing the size effect on the response of the structures in the nanosize.
e0 is a material constant, and a and L are the internal and external characteristic lengths of the
nanostructures, respectively. µ = e0a/L is the nonlocal parameter.
To develop the nonlocal governing equations of motion of the three-layered nanobeam, it

is necessary to obtain the nonlocal normal resultant force N
(i)
x , shear force Qx and bending

moment M
(i)
x . From Eqs. (2.9) and (2.8), the nonlocal N

(i)
x , Qx and M

(i)
x are defined as

N (1)x − (e0a)
2N (1)x,xx = A11u1,x N (2)x − (e0a)

2N (2)x,xx = A12u2,x

N (3)x − (e0a)
2N (3)x,xx = A13u3,x M (1)x − (e0a)

2M (1)x,xx = B11w,xx

M (3)x − (e0a)
2M (3)x,xx = B13w,xx M (2)x − (e0a)

2M (2)x,xx = B12φ,x

Qx − (e0a)
2Qx,xx = ksC12(w,x + φ)

(2.10)

By substituting Eq. (2.10), into Eq. (2.8), the explicit expression of the nonlocal normal

resultant force N
(i)
x , shear force Qx and bending moment M

(i)
x can be written as

N (1)x = A11u1,x + (e0a)
2I1ü1,x N (2)x = A12u2,x + (e0a)

2I2ü2,x

N (3)x = A13u3,x + (e0a)
2I4ü3,x M (1)x = B11w,xx + (e0a)

2I1ẅ,x

M (3)x = B13w,xx + (e0a)
2I4ẅ,x M (2)x = B12φ,x + (e0a)

2I3φ̈,x

Qx = ksC12(w,x + φ) + (e0a)
2I2ẅ,x

(2.11)

Then, the nonlocal governing equations of motion of the three-layered nanobeam can be expres-
sed as

A11u1,xx = I1(ü1 − (e0a)
2ü1,xx) A12u2,xx = I2(ü2 − (e0a)

2ü2,xx)

A13u3,xx = I4(ü3,xx − (e0a)
2ü3,xx) B12φ,xx − ksC12(w,x + φ) = I3(φ̈− (e0a)

2φ̈,xx)

(B11 +B13)w,xxxx + ksC12(w,xx + φ,x) = (I1 + I2 + I4)(ẅ − (e0a)
2ẅ,xx)

(2.12)
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3. Non-dimensional form of governing equations of motion of the nonlocal

three-layred nanobeam model

The non-dimensionalization procedure has important applications in the analysis of differential
equations. In this part, all parameters of the governing equations of motion are changed to
a dimensionless form in order to facilitate the resolution process. Considering the following
dimensionless parameters as

ξ =
x

L
η =
L

H
µ =
e0a

L
τ =
t

L

√

At
It

At = A11 +A12 +A13

It = I1 + I2 + I4 H = h1 + h2 + h3 (U1, U2, U3,W ) =
(u1
H
,
u2
H
,
u3
H
,
w

H

)

φ∗ = φ C12 =
c12
A12

(A11, A12, A13) =
(A11
A11
,
A12
A12
,
A13
A13

)

(B11, B12, B13, C12) =
( B11
A11h21

,
B12
A12h22

,
B13
A13h23

,
C12
A12

)

(I1, I2, I3, I4) =
(I1
I1
,
I2
I2
,
I3
I2h22
,
I4
I4

)

(3.1)

Governing equation (2.12) can be rewritten taking into account the dimensionless parameters
as

A11U1,ξξ = I1(Ü1 − µ
2Ü1,ξξ) A12U2,ξξ = I2(Ü2 − µ

2Ü2,ξξ)

A13U3,ξξ = I4(Ü3 − µ
2Ü3,ξξ) B12φ

∗
,ξξ − ksC12η(W,ξ + ηφ

∗) = I3(φ̈
∗ − µ2φ̈∗,ξξ)

(B11 +B13)W,ξξξξ + ksC12(W,ξξ + ηφ
∗
,ξ) = (I1 + I2 + I4)(Ẅ − µ

2Ẅ,ξξ)

(3.2)

The related edge conditions can also be adjusted in the dimensionless form:

— for a clamped-clamped (C-C) three-layred nanobeam

U1 = U2 = U3 =W = φ
∗ = 0 at ξ = 0, 1 (3.3)

— for a simply supported-simply supported (SS-SS) three-layred nanobeam

U1 = U2 = U3 =W =M
(2)
x = 0 at ξ = 0, 1 (3.4)

— for a clamped-simply supported (C-SS) three-layred nanobeam

U1 = U2 = U3 =W = φ
∗ = 0 at ξ = 0

U1 = U2 = U3 =W =M
(2)
x = 0 at ξ = 1

(3.5)

4. Modal discretization

In this part, a reduced order method is used to analyze the behavior of the three-layered na-
nobeam incorporating the mid-layer shear effect. The derivative terms, in governing equations
Eq. (3.2) and related boundary conditions Eqs. (3.3)-(3.5) are discretized by using the Genera-
lized Differential Quadrature Method (GDQM) in order to determine natural frequencies and
deflection mode shapes of the three-layred nanobeam. GDQM’s main concept is to consider the
derivative of a function at a chosen point as a linear weighted sum of the function values at all
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of the surrounding sample points in the corresponding domain (Ke and Wang, 2012). Hence, U1,
U2, U3, W , φ

∗ and their k-th derivatives regarding ξ can be expressed as

{U1, U2, U3,W, φ
∗} =

N
∑

m=1

lm(ξ){U1m(ξm, t), U2m(ξm, t), U3m(ξm, t),Wm(ξm, t), φ
∗
m(ξm, t)}

(4.1)

and

∂k

∂ξk
{U1, U2, U3,W, φ

∗}
∣

∣

∣

ξ=ξi

=
N
∑

m=1

C
(k)
im {U1m(ξm, t), U2m(ξm, t), U3m(ξm, t),Wm(ξm, t), φ

∗
m(ξm, t)}

(4.2)

where N is the number of grid points dispersed along the beam axis, the nanobeam deflection
at the Chebyshev-Gauss-Lobatto grid points ξi (Ke and Wang, 2012) is given by

ζi =
1

2

[

1− cos
π(i− 1)

N − 1

]

i = 1, 2, . . . , N (4.3)

The Lagrange interpolation polynomials lm(ξ) are expressed as

lm(ξ) =
R(ξ)

(ξ − ξm)R(1)(ξ)
R(ξ) =

N
∏

m=1

(ξ − ξm) R(1)(ξ) =
N
∏

m=1,m6=i

(ξi − ξm) (4.4)

and C
(k)
im are the weighting coefficients of the k-th order differentiation, which can be deter-

mined by employing a set of recurrence formulae through the following equations

[D
(k)
ξ ]ij =C

(k)
ij =























































[Ix]ij k = 0

R(ξi)

(ξi − ξm)R(ξm)
i 6= m ∧ i,m = 1, . . . , N ∧ k = 1

k
(

C
(1)
imC

(k−1)
ii −

C
(k−1)
im

ζi − ζm

)

i 6= m ∧ m = 1, . . . , N ∧ k = 2, 3, . . . , N−1

−
N
∑

m=1,m6=i
C
(k)
im i= m ∧ i,m = 1, . . . , N ∧ k = 2, 3, . . . , N−1

(4.5)

where Ix is the N ×N identity matrix.
Considering U1, U2, U3,W and φ

∗ defined as

U1 = [U11, U12, U13, . . . , U1N ]
T U2 = [U21, U22, U23, . . . , U2N ]

T

U3 = [U31, U32, U33, . . . , U3N ]
T W = [W1,W2,W3, . . . ,WN ]

T

φ∗ = [φ∗1, φ
∗
2, φ
∗
3, . . . , φ

∗
N ]
T

(4.6)

and

U1i = U1(ξi) U2i = U2(ξi) U3i = U3(ξi)

Wi =W (ξi) φ∗i = φ
∗(ξi)

(4.7)

consequently, we obtain discretized governing equations of motion expressed as

MẌ+KX = 0 (4.8)
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whereX,K andM denote, respectively, the vector of variables, stiffness matrix and mass matrix
defined as

X =
[

UT1 U
T
2 U

T
3 W

T φ∗T
]T

K =





















A11C
(2)
ξ 0 0 0 0

0 A12C
(2)
ξ 0 0 0

0 0 A13C
(2)
ξ 0 0

0 0 0 (B11 +B13)C
(4)
ξ + ksC12C

(2)
ξ ksC12ηC

(1)
ξ

0 0 0 −ksC12C
(1)
ξ B12C

(2)
ξ − ksC12ηC

(0)
ξ





















M =















I1Dξ 0 0 0 0
0 I1Dξ 0 0 0
0 0 I4Dξ 0 0
0 0 0 (I1 + I2 + I4)Dξ 0
0 0 0 0 I3Dξ















(4.9)

with Dξ = C
(
ξ0)− µ

2C
(2)
ξ .

Accordingly, the related edge conditions can be handled in the same way. It follows that for a
simply supported-simply supported (SS-SS) three-layred nanobeam incorporating the mid-layer
shear effect one obtains

U11 = U21 = U31 =W1 =M
(2)
x1 = 0 at ξ = 0

U1N = U2N = U3N =WN =M
(2)
xN = 0 at ξ = 1

(4.10)

with

M
(2)
x1 = B12

N
∑

m=1

C
(1)
1mφm + µ

2I2

N
∑

m=1

C
(1)
1mẄm

M
(2)
xN = B12

N
∑

m=1

C
(1)
Nmφm + µ

2I2

N
∑

m=1

C
(1)
NmẄm

(4.11)

5. Results and discussion

In the design of nanostructures, many nano-materials have been used such as carbon nano-
tubes (CNTs) (Behera et al., 2014) and graphene nanoribbons (GNRs) (Nazemnezhad et al.,
2014). The choice of the two nano-materials is based on the superiority of mechanical and
electrical properties (Geim, 2009). In fact, these nano-materials have an ultrahigh frequency
range up to the terahertz order. In this part, we present numerical results of vibration of the
clamped-clamped (–C), simply supported-simply supported (SS-SS) and clamped-simply sup-
ported (C-SS) three-layred nanobeam. The three-layred nanobeam is made of bilayer Graphene
nanoribbon (BLGNR) with the following material properties ρ = 2260 kgm−3, G = 4.6GPa and
E = 1.06TPa (Nazemnezhad et al., 2014) and (Hosseini Kordkheili et al., 2013). The effects
of the dimensionless nonlocal parameter µ on vibration frequencies and deflection mode shapes
under different boundary conditions are discussed. It is assumed that the length of the nanobe-
am is L = 14 nm, thicknesses h1 = h3 = 0.3 nm, h2 = 0.1 nm and the shear correction factor
ks = 0.563.
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5.1. Comparison and convergence studies

In this Section, behavior of the three-layered nanobeam incorporating the mid-layer shear
effect with different end supports are analysed. Table 1 presents the fundamental ω1 [THz] of the
three-layred nanobeam with a different number of elements N used for computing the GDQM
with µ = 0.2. It can be seen that the numerical values get similar to each other as N increases,
and those with N = 18 and 20 are similar for different boundary conditions C-C, SS-SS and
C-SS. Therefore, N = 18 is employed in all subsequent computing.

Table 1. Fundamental frequency ω1 [THz] of the C-C, SS-SS and C-SS three-layred nanobeam
with different N

N C-C SS-SS C-SS

8 0.93886 0.63522 0.71865

10 0.85984 0.41472 0.60103

14 0.86111 0.43731 0.60156

18 0.86117 0.45077 0.60228

20 0.86117 0.45077 0.60228

Until now, no theoretical simulations, experimental observations and molecular dynamic
results on nonlocal three-layred nanobeams are reported that we can examine and compare the
present work against. Hence, in order to ensure efficiency and validity of the proposed model,
we consider the two following cases.

In fact, if we decrease thickness of the central layer of the beam comparing to the upper
and lower layers thicknesses, the shear effect is neglected and the present model can be directly
reduced to the nonlocal Euler-Bernoulli beam model.

Further, if we increase thickness of the central layer of the beam comparing to the upper
and lower layers thicknesses, the shear effect is prevalent, so that the present model can be
considered as the nonlocal Timoshenko beam model.
Moreover, Wang et al. (2007) analytically analyzed free vibration of an elastic nanobeam

based on the nonlocal theory. Tables 2 and 3 give non-dimensional linear frequencies of single-
-walled carbon nanotubes based on respectively the nonlocal Euler-Bernouilli and Timoshenko
beam model. The analytical results provided by Wang et al. (2007) are also given for comparison.
Parameters used in this example are taken as (Wang et al., 2007): diameter d = 0.678 nm,
Young’s modulus E = 5.5TPa, Poisson’s ratio ν = 0.19, length of beam L = 10d and shear
correction factor ks = 0.563.
Solutions obtained by the proposed model of three-layered nanobeams with the shear effect

incorporated in the mid-layer based on nonlocal elasticity theory are in good agreement with the
analytical results given by Wang et al. (2007) using the nonlocal Euler-Bernoulli and Timoshenko
beam theory as well.

5.2. The proposed nanobeam vibration analysis

The effect of the scaling parameter µ on the first four natural frequencies ω1 − ω4 [THz]
of the three layred nanobeam incorporating the mid-layer shear effect for different boundary
conditions is presented in Fig. 2. It should be mentioned that the nonlocal parameter µ = 0
corresponds to classical nanobeams without the nonlocal effect.
It can be clearly noticed that the nonlocal parameter has a marked effect on the natural

frequencies of the three layred nanobeam incorporating the mid-layer shear effect for different
edge conditions. Indeed, an increase in the nonlocal parameter leads to a decrease in the natural
frequencies. This reduction is more manifested when we consider higher vibration modes. The
reduction can be explained by the fact that the nonlocal model may be seen as atoms linked by
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Table 2. Dimensionless frequency of single-walled carbon nanotubes based on the nonlocal Euler
Bernoulli beam model considering h1 = h3 = 0.3 nm and h2 = 0.078 nm for different boundary
conditions

Frequency
parameter

µ = 0.1 µ = 0.3
Wang et al.

Present
Wang et al.

Present
(2007) (2007)

C-C

1 4.5945 4.4958 3.9184 3.7276

2 7.1402 7.1803 5.1963 5.2607

3 9.2583 9.3447 6.2317 6.1826

4 11.016 11.157 7.0482 7.1145

SS-SS

1 3.0685 3.2293 2.6800 2.7139

2 5.7817 5.4906 4.3013 4.3293

3 8.0400 8.1050 5.4423 5.5188

4 9.9162 10.072 6.3630 6.4189

C-SS

1 3.8209 3.7139 3.2828 3.3506

2 6.4649 6.4293 4.7668 4.6857

3 8.6517 8.6378 5.4423 5.4614

4 10.469 10.521 6.3630 6.4952

Table 3. Dimensionless frequency of single-walled carbon nanotubes based on the nonlocal
Timoshenko beammodel considering h1 = h3 = 0.039 nm and h2 = 0.6 nm for different boundary
conditions

Frequency
parameter

µ = 0.1 µ = 0.3
Wang et al.

Present
Wang et al.

Present
(2007) (2007)

C-C

1 4.3026 4.2512 3.2420 3.3238

2 6.3507 6.4276 3.9940 4.1702

3 8.1969 7.9274 4.4769 4.4708

4 9.5447 9.1456 5.1131 4.9152

SS-SS

1 3.0243 3.1423 2.2867 2.4693

2 5.5304 5.7235 3.4037 3.2657

3 7.4699 7.2662 4.1644 4.0209

4 8.9874 8.6490 4.7436 4.5083

C-SS

1 3.6939 2.9972 2.7471 2.9446

2 6.0348 6.3202 3.7312 3.8269

3 7.8456 7.5816 4.1644 4.2341

4 9.2751 8.8744 4.7436 4.6686

elastic springs while in the case of a local continuum model, the spring is constant and supposed
to take the infinite value. Consequently, the presence of the nonlocal effect tends to decrease the
stiffness of nanostructures and, hence, decreases the values of frequencies (Reddy 2007; Wang
et al., 2007).
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Fig. 2. Effect of the scaling parameter on the first four natural frequencies of three-layered nanobeams
for different boundary conditions: (a) C-C, (b) SS-SS, (c) C-SS

Fig. 3. Effect of the scaling parameter on the first four deflection shapes for C-C three layered
nanobeams: (a) first deflection, (b) second deflection, (c) third deflection and (d) fourth deflection
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Fig. 4. Effect of the scaling parameter on the first four deflection shapes for C-SS three layered
nanobeams: (a) first deflection, (b) second deflection, (c) third deflection and (d) fourth deflection

The C-C nanobeam has higher natural frequencies while the SS-SS has lower natural fre-
quencies since the end support is stronger for the C-C nanobeam and weaker for the SS-SS
nanobeam.

Sometimes, the knowledge of higher modes is necessary before finalizing the design of an
engineering system. Hence, the first four deflections of nonlocal C-C and C-SS of the proposed
three-layred nanobeam are shown respectively in Figs. 3 and 4 for different scaling parameters.

It can be noticed that the deflection mode shapes are affected by an increase in the nonlocal
parameter. Deflection graphs of nonlocal C-C and C-SS three-layred nanobeams incorporating
the mid-layer shear effect are plotted in this study for different scaling effect parameters to
be useful for benchmarking. In fact, by understanding the modes of vibration, we can design
structures better in accordance with the need.

6. Conclusion

This paper investigates free vibration of three-layered nanobeams incorporating the mid-layer
shear effect based on the nonlocal theory, Euler-Bernoulli and Timoshenko beam theories. The
GDQM is employed to obtain natural frequencies and deflection mode shapes of the three-layered
nanobeams incorporating the mid-layer shear effect with different end supports. Effects of the
scaling parameter on vibration characteristics of the proposed nanobeams model are discussed.
The results show that an increase in the nonlocal parameter leads to a decrease in the natural
frequencies, and the nonlocal parameter nanobeam has a distinguished effect on the mode shapes
for the C-C and C-SS nanobeams, but has a less effect on the mode shapes for the SS-SS of the
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proposed nanobeam. Numerical solutions presented herein may be useful to design MEMS and
NEMS devices.

References

1. Ansari R., Gholami R., 2016, Size-dependent nonlinear vibrations of first-order shear deformable
magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory, International
Journal of Applied Mechanics, 8, 4, 1650053-1650086

2. Bauer S., Pittrof A., Tsuchiya H., Schmuki P., 2011, Size-effects in TiO2 nanotubes: Dia-
meter dependent anatase/rutile stabilization, Electrochemistry Communications, 6, 538-541

3. Behera L., Chakraverty S., 2014, Free vibration of Euler and Timoshenko nanobeams using
boundary characteristic orthogonal polynomials, Applied Nanoscience, 3, 347-358

4. Eltaher M.A., Emam S.A., Mahmoud F.F., 2013, Static and stability analysis of nonlocal
functionally graded nanobeams, Composite Structures, 96, 82-88

5. Eringen A.C., 1972, Nonlocal polar elastic continua, International Journal of Engineering Scien-
ce, 10, 1, 1-16

6. Geim A.K., 2009, Graphene: Status and Prospects, Manchester Centre for Mesoscience and Nano-
technology, University of Manchester, Oxford Road M13 9PL, Manchester, UK, 324, 1-8

7. He J.H., 1999, Homotopy perturbation technique, Computer Methods in Applied Mechanics and
Engineering, 178, 257-262

8. Hosseini Kordkheili S.A., Sani H., 2013, Mechanical properties of double-layered graphene
sheets, Computational Materials Science, 69, 335-343

9. Hung E.S., Senturia S.D., 1999, Extending the travel range of analog-tuned electrostatic actu-
ators, Journal of Microelectromechanics Systems, 8, 497-505

10. Ke L.L., Wang Y.S., 2012, Thermoelectric-mechanical vibration of piezoelectric nanobeams based
on nonlocal theory, Smart Materials and Structures, 21, 1-12

11. Ke L.L., Wang Y.S., 2014, Free vibration of size-dependent magneto-electro-elastic nanobeams
based on the nonlocal theory, Physica E, 63, 52-61

12. Koiter W.T., 1964, Couple-stresses in the theory of elasticity: I and II, Koninklijke Nederlandse
Akademie van Wetenschappen (Royal Netherlands Academy of Arts and Sciences), 67, 17-44

13. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., 2003, Experiments and theory in
strain gradient elasticity, Journal of Mechanics and Physics of Solids, 51, 1477-1508

14. Li C., Lim C.W., Yu J.L., 2011, Dynamics and stability of transverse vibrations of nonlocal
nanobeams with a variable axial load, Smart Materials and Structures, 20

15. Li X., Bhushan B., Takashima K., Baek C.W., Kim Y.K., 2003, Mechanical characterization
of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,
Ultramicroscopy, 97, 481-494

16. Lim C.W., 2010, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field
theory: equilibrium, governing equation and static deflection, Applied Mathematics and Mechanics,
1, 37-54

17. Mindlin R.D., 1963, Influence of couple-stresses on stress concentrations, Experimental Mechanics,
3, 1-7

18. Mindlin R.D., 1965, Second gradient of strain and surface-tension in linear elasticity, International
Journal of Solids and Structures, 1, 217-238

19. Moser Y., Gijs M.A.M., 2007, Miniaturized flexible temperature sensor, Journal of Microelec-
tromechanical Systems, 16, 1349-1354



1312 N. Kammoun et al.

20. Mousavi T., Bornassi S., Haddadpour H., 2013, The effect of small scale on the pull-
-in instability of nano-switches using DQM, International Journal of Solids and Structures, 50,
1193-1202

21. Najar F., Nayfeh A.H., Abdel-Rahman E.M., Choura S., El-Borgi S., 2010, Global
stability of microbeam-based electrostatic microactuators, Journal of Vibration and Control, 16,
721-748

22. Nazemnezhad R., Hosseini-Hashemi S., 2014, Free vibration analysis of multi-layer graphene
nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal
elasticity, Physics Letters A, 44, 3225-3232

23. Nazemnezhad R., Zare M., 2016, Nonlocal Reddy beam model for free vibration analysis of
multilayer nanoribbons incorporating interlayer shear effect, European Journal of Mechanics –
A/Solids, 55, 234-242

24. Nilsson J., Neto A.C., Guinea F., Peres N., 2008, Electronic properties of bilayer and mul-
tilayer graphene, Physical Review B, 78, 4, 405-434

25. Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models
to nanotechnology, International Journal of Engineering Science, 41, 305-312

26. Pei J., Tian F., Thundat T., 2004, Glucose biosensor based on the microcantilever, Analytical
Chemistry, 76, 292-297

27. Reddy J.N., 2007, Nonlocal theories for bending, buckling and vibration of beams, International
Journal of Engineering Science, 45, 288-307

28. Reddy J.N., 2010, Nonlocal nonlinear formulations for bending of classical and shear deformation
theories of beams and plates, International Journal of Engineering Science, 48, 1507-1518

29. Reddy J.N., El-Borgi S., 2014, Eringen’s nonlocal theories of beams accounting for moderate
rotations, International Journal of Engineering Science, 82, 159-177

30. Roque C.M.C., Ferreira A.J.M., Reddy J.N., 2011, Analysis of Timoshenko nanobeams
with a nonlocal formulation and meshless method, International Journal of Engineering Science,
49, 976-984

31. Shkel A.M., 2006, Type I and Type II micromachined vibratory gyroscopes, Proceedings of the
IEEE/Institute of Navigation Plans, San Diego, CA, 586-593

32. Simsek M., 2014, Large amplitude free vibration of nanobeams with various boundary conditions
based on nonlocal elasticity theory, Composites: Part B, 56, 621-628

33. Thai H.T., 2012, A nonlocal beam theory for bending, buckling, and vibration of nanobeams,
International Journal of Engineering Science, 52, 56-64

34. Toupin R.A., 1964, Theories of elasticity with couple-stress, Archive for Rational Mechanics and
Analysis, 17, 85-112

35. Wang Q., Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal
continuum mechanics for modelling carbon nanotubes, Nanotechnology, 18, 7

Manuscript received October 16, 2016; accepted for print May 31, 2017


